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Abstract
The development of a complex organism
relies on the precise temporal and spacial
expression of its genome in many different
cell types. The unique phenotype of hepa-
tocytes arises from the expression of genes
in a liver specific fashion, which is
controlled primarily at the level of mRNA
synthesis. By analysing DNA sequences
implicated in liver specific transcription,
it has been possible to identify members of
the nuclear proteins, such as the liver
enriched transactivating factors, hepatic
nuclear factor 1(HNF-1), HNF-3, HNF-4,
HNF-6, CCAAT/enhancer binding protein
(C/EBP), and D binding protein (DBP),
which are key elements in the liver specific
transcriptional regulation of genes. Each
of these factors is characterised by DNA
binding domains that bind to unique DNA
sequences (cis-acting factors) in the pro-
moter and enhancer regions of genes
expressed in terminally diVerentiated
hepatocytes (such as, albumin, á1-
antitrypsin, transthyretin, á-fetoprotein).
The determination of the tissue distribu-
tion of these factors and analysis of their
hierarchical relations has led to the hy-
pothesis that the cooperation of liver
enriched transcription factors with the
ubiquitous transactivating factors is nec-
essary, and possibly even suYcient, for the
maintenance of liver specific gene tran-
scription. With the increase in infor-
mation about transcriptional regulation,
it should be possible to evaluate fully the
clinicopathological usefulness of tran-
scription factors in the diagnosis and
treatment of hepatocellular carcinoma.
(J Clin Pathol: Mol Pathol 1999;52:19–24)
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The tissue specific expression of genes is based
on the presence of cis-acting sequences in their
promoter and enhancer regions that interact
with sequence specific nuclear transcription
factors, which potentiate or depress transcrip-
tional initiation.1 Therefore, the establishment
and maintenance of a cell type specific, diVer-
entiated phenotype relies on the presence and
activity of an array of tissue enriched DNA
binding proteins with transactivating activity.
In general, the diVerent stages of hepatocyte
diVerentiation have been characterised by the
transcripts detected, and the expression of such
transcripts is believed to be governed by the
sets of transcription factors that are activated.2

Hepatic diVerentiation is presumed to be the
result of the combined action of members of
liver enriched transcription factors (LETFs),
including CCAAT/enhancer binding protein
(C/EBP), D binding protein (DBP), hepatic
nuclear factor 3 (HNF-3), HNF-1, HNF-4,
and HNF-6. These LETFs regulate each other
and form a transcriptional hierachy that is
involved both in the determination and the
maintenanceof thehepaticphenotype.3 Hepato-
carcinogenesis is characterised by the sequen-
tial appearance of preneoplastic and neoplastic
populations of cells that show, in comparison
with their normal counterparts, alterations in
their proliferative behaviour and changes in the
expression and activity of a large number of
liver specific proteins. The phenotypical
heterogeneity of hepatocellular carcinoma foci
and nodules indicates the existence of distinct
subpopulations of lesions.5 The promoter
regions of several genes, including those
encoding albumin, á-fetoprotein (á-FP), á1-
antitrypsin, transthyretin, fibrinogen, and cer-
tain members of the cytochrome P450 2C
family that are highly expressed in the liver,
have been shown to contain consensus se-
quences that bind diVerent LETFs, and the
relative abundance of these factors determines
the level of gene expression.6–12 Some studies
have investigated whether the changes in these
LETFs might also occur in hepatocarcinogen-
esis.

Hepatocyte nuclear factor-1 (HNF-1)
family
The HNF-1 family includes HNF-1á (also
called LFB1 or AFP) and HNF-1â (also called
variant HNF-1). These proteins are character-
ised by a homeobox containing, DNA binding
domain that is well conserved throughout evo-
lution and a POU domain that confers
sequence specificity. As a result of a similar
dimerisation domain in their N-terminal re-
gions, HNF-1á and HNF-1â proteins can
dimerise on their own to form homodimers or
they can form heterodimers with each other.
The functions of diVerent transactivation
domains localised at their C-terminal regions
show that HNF-1á has a higher potency of
transactivation than HNF-1â (fig 1). HNF-1á
and HNF-1â genes are located on diVerent
chromosomes—chromosomes 12 and 17,
respectively.13–15 HNF-1â is expressed early on
during embryonic development, in the endo-
derm of the foregut, whereas HNF-1á is
activated later, upon condensation of the
hepatic parenchyma, and its expression de-
creases in the adult liver (fig 2).14–17 Binding
sites for HNF-1 have been shown in the
promoters or enhancers of genes that are
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expressed almost exclusively in the liver, such
as albumin,6 á-fetoprotein,7 á-fibrinogen,
â-fibrinogen, á1-antitrypsin,9 transthyretin,10

aldolase B,18 and the hepatitis B virus large sur-
face protein.19 The study of the rat hepatoma
cell, H4II, and its derivatives show that
HNF-1á expression parallels the hepatic pheno-
type of the cells. HNF-1á is expressed only in
fully diVerentiated cells and is absent in dedif-
ferentiated variants or extinguished somatic
hybrids. On the other hand, HNF-1â retains its
expression in dediVerentiated variants and
somatic cell hybrids.20 21 In hepatocarcinogen-
esis, the transcriptional alterations of HNF-1
can be demonstrated by the reverse
transcription–polymerase chain reaction
(RT–PCR)22 and the RNA protection assay,23

revealing that the HNF-1á:HNF-1â ratio is
higher in well diVerentiated human hepatocel-
lular carcinoma and lower in poorly diVerenti-
ated human hepatocellular carcinoma, the
latter being lower by 20–30%; in addition,
HNF-1â mRNA remains unchanged in mouse
liver tumours. The concentration of HNF-1á
protein is also reduced in rat liver tumours and
HNF-1 binding activity is reduced by lowered
concentrations of HNF-1á protein in the tran-
sition from well diVerentiated to poorly diVer-
entiated human hepatocellular carcinoma.24 25

Both HNF-1á and HNF-1â are also found in
other tissues including kidney, stomach, and
intestine. The loss of HNF-1á has been shown
during renal carcinogenesis, which is usually

accompanied by dediVerentiation processes,
including the loss of tissue specific gene
expression.26 The promoter analysis of
HNF-1á shows that in addition to HNF-1á
autoregulation, HNF-4 is an essential activator
of HNF-1á gene expression (fig 3).

Hepatocyte nuclear factor 4 (HNF-4)
HNF-4 is expressed in liver, kidney, and intes-
tine in the adult,27 and activates a diverse set of
liver genes such as transthyretin and
á1-antitrypsin28 in early liver development,
often interacting in synergy with adjacent
binding factors.29 It belongs to the orphan ster-
oid hormone nuclear receptor superfamily and
is characterised by two highly conserved
domains (fig 1). The DNA binding domain in
the N-terminal half consists of two “zinc
finger” motifs followed by an extensive
C-terminal ligand binding domain, which per-
forms a variety of functions, including transac-
tivation, ligand binding, and protein
dimerisation.27 During mouse development,
HNF-4 is expressed in the primary endoderm
at 4.5 days and then restricted to the visceral
endoderm from 5.5 days (fig 2). In cell genetic
analysis of hepatocyte diVerentiation, HNF-4
shows a capability to transactivate endogenous
HNF-1á and liver genes such as á1-antitrypsin
and to induce rediVerentiation of a dediVeren-
tiated hepatoma cell line, H5, by stable
transfection of exogenous HNF-4.30 H5 cells
express neither HNF-1á nor HNF-4; however,

Figure 1 Schematic representation of liver enriched transcription factor proteins. (A) HNF-1 contains highly conserved
dimerisation, POU (sequence specific recognition), and homeo domians and non-conserved transcriptional activation
domains (AD). (B) HNF4 contains highly conserved DNA binding (zinc finger motif) and dimerisation/ligand binding
domains, and non-conserved varient A/B as well as transcriptional activation domains (AD). (C) The HNF-3 family
contains a highly conserved DNA binding domain (winged helix motif) and two transcriptional activation domains in the
C-terminal and N-terminal regions, respectively. (D) The C/EBP family contains a highly conserved basic region, leucine
zipper motif, and two transcriptional activation domains (AD). (E) DBP has a similar structure to C/EBP but it also has
a PAR domain. (F) HNF-6 contains two diVerent DNA binding domains: cut and homeo domains.
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the presence of C/EBPá and HNF-3 has been
revealed, implying that these factors alone are
not suYcient to maintain expression of marker
genes of hepatic diVerentiation. After HNF-4
transduction, cells express the previously silent
HNF-1á and show activation of some hepatic
proteins, but not of the endogenous HNF-4.
This study implies a transcriptional hierarchy
from HNF-4, to HNF-1á, to target genes (fig
3). Furthermore, the eVects of HNF-4 expres-
sion extend to the re-establishment of diVeren-
tiated hepatic epithelial cell morphology,31 such
as inducing: (1) re-expression of E-cadherin,
which is a prerequisite for the formation of the
junctional complex, including desmosomes
and tight junctions; (2) simple epithelial polar-
ity; (3) slow, “pile up” growth habit. It is
reported that a factor, “seven up”, which is the
drosophila homologue of HNF-4, is involved in
terminal fat cell diVerentiation in drosophila.32

These data indicate that the HNF-4 gene
might be a tumour suppressor gene that plays
important roles in diVerentiation and antipro-

liferation. The expression of HNF-4 decreases
during hepatocarcinogenesis and a coordinate
variation of HNF-4 and HNF-1á binding
activity have been demostrated.24 33 The up-
stream regulation of HNF-4 is still unclear,
although HNF-4 transactivation is blocked by
the intracellular accumulation of the HNF-1á
protein (fig 3).34 Experiments have shown that
the tyrosine or serine/threonine phosphoryla-
tions of HNF-4 negatively modulate its DNA
binding and transactivation,35 36 and results
suggest that HNF-4 might be regulated during
cellular growth. The action of HNF-4, an
orphan receptor, might be influenced by a
potential ligand (fig 3).

C/EBP and DBP
C/EBP family members have a basic region and
an adjacent leucine zipper (b/ZIP) structure,
and they all bind to similar DNA sequences
(fig 1).37 38 In this family, C/EBPá, C/EBPâ and
C/EBPä homodimerise or heterodimerise, and
have diVerent activation eVects. They show
strong similarity in their C-terminal sequences
and divergence in their N-terminal transactiva-
tion domains.38 39 C/EBP proteins are ex-
pressed at a later stage in development (fig 2),
and are found abundantly in liver and fat
tissues, particularly in fully diVerentiated
cells.40–43 Transduction of C/EBPá cDNA into
pre-adipocytes results in the suppression of
clonal cell growth and the promotion of adipo-
genic diVerentiation by inducing the expres-
sion of adipocyte specific genes such as 422
adipose P2 protein 422.44–46 Proof that the
expression of C/EBPá proteins is required for
pre-adipocyte diVerentiation is also provided
by using the antisense RNA approach.47 48

Constitutive antisense C/EBPá RNA impairs
the expression of C/EBPá itself and of
adipocyte specific genes. C/EBPá is also
expressed strongly in the mature hepatocyte
and stimulates the transcription of liver specific
genes such as albumin,49 50 transthyretin, and
á1-antitrypsin.51 C/EBPá transcription corre-
lates closely with the passage of hepatocytes
through the cell cycle of the regenerating liver.52

Proliferating hepatocytes in the partially hepa-
tectomised liver demonstrate an abrupt reduc-
tion of C/EBPá mRNA within the first three
hours of surgery, corresponding to the transi-
tion from the G0 to the G1 phase of the cell
cycle. C/EBPá returns to a normal level by 72
hours, through a gradual increase after the S
phase. All evidence indicates that C/EBPá
regulates two aspects of terminal diVerentia-
tion: induction of diVerentiation specific genes
and cessation of mitotic growth. One mech-
anism of C/EBPá-induced growth arrest is that
C/EBPá upregulates p21/SDI-1 (senescent cell
derived inhibitor 1) gene expression and stabi-
lises the post-translational p21/SDI-1 protein.53

p21/SDI-1 interacts with cyclin dependent
kinases (CDKs), cyclins, and proliferating cell
nuclear antigen (PCNA) to inhibit the activity
of CDKs, and prevents DNA synthesis by
inhibiting DNA polymerase. The C/EBP fam-
ily plays an important role in both the
inhibition of proliferative and its establishment,
as well as in maintaining the diVerentiation of

Figure 2 Hierarchy of expression of liver enriched
transcription factors (LETFs) in liver development. Boxes
indicate the sequential developmental stages.
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tissues in which C/EBPs are found. In human
hepatocellular carcinoma tissues, the level of
C/EBPá expression is very low or
undetectable.24 54 Induction of C/EBPá expres-
sion in human hepatoma cells, Hep3B and
HepG2, results in reversible arrest of prolifera-
tion, and delayed tumorigenesis is seen in
immunodeficient mice implanted with two
transfected cells.55 C/EBPâ (also called NF-
IL6) and C/EBPä are also mediators that regu-
late the acute phase response and they have low
activity until activated by inflammatory stimuli.
Activated C/EBPâ can transactivate multiple
cytokine genes57–59 and promote the diVerentia-
tion of macrophages and granulocytes.60 61

Another member of the b/ZIP family, DBP,
binds to the D element of the albumin promoter
that is recognised by C/EBPâ.62 Both DBP and
C/EBPâ, as liver enriched transcription factors,
appear to be involved in the diVerentiation and
regulation of acute phase and immune re-
sponses; however, DBP belongs to a distinct
b/ZIP family, the PAR protein family, and is
detected only after birth (fig 2).63 DBP and
C/EBPâ do not heterodimerise, and C/EBPâ
has a more relaxed binding specificity.64 65

Hepatocyte nuclear factor 3 (HNF-3)
The HNF-3 family comprises three proteins,
HNF-3á, HNF-3â, and HNF-3ã. These pro-
teins share high homology in the winged helix/
fork head DNA binding domain and in two
short similar regions in their C-terminal and
N-terminal regions, which exhibit transactivity
(fig 1).66–68 They have been shown to be
required for node and notochord axis forma-
tion and endodermal diVerentiation in the
mouse embryo (fig 2).69 70 HNF-3â, HNF-3á,
and HNF-3ã are activated sequentially during
development. HNF-3â mRNA is expressed
first in the primitive streak and the node before
the expression of any liver genes. Slightly later
than HNF-3â, HNF-3á (along with HNF-3â)
is expressed in the definitive endoderm that
lines the developing gut and subsequently
forms components of the liver, lung, pancreas,
and alimentary canal. HNF-3ã is expressed in
the early liver and more posterior endoderm
after the gut has formed.71 In combination with
other liver enriched transcription factors that
are expressed later, HNF-3 binds and transac-
tivates numerous liver specific genes such as

albumin, transthyretin, á1-antitrypsin,67 72 and
transcription factor HNF-1á (fig 3).73 The
concentration of HNF-3á increases when
hepatocye derived cell lines are cultured on an
extracellular matrix gel substratum. Extracellu-
lar matrix gel substrata coordinately induce
diVerentiated cell morphology and liver gene
transcription in primary hepatocyte
cultures.74 75 Thus, HNF-3á is important in
transducing extracellular signals in the main-
tainence of hepatocyte diVerentiation. A
winged helix gene in Caenorhabolitis elegans,
lin-31, appears to act via a receptor tyrosine
kinase signal transduction cascade.76 Once
HNF-3á and HNF-3â genes are activated, the
gene products help to maintain their own syn-
thesis by autoactivation (fig 3).77 78 In primary
cultured rat hepatocytes that exhibit the transi-
tion between growth and diVerentiation, the
constant expression of HNF-3á and HNF-3â
is seen; nevertheless, HNF-1á, HNF-4,
C/EBPá, and C/EBPâ show a decrease during
proliferation and an increase after the induc-
tion of diVerentiation.79 In chemically induced
mouse liver tumours, the expression of
HNF-3á and HNF-3â remains unchanged,
although that of HNF-3ã increases.23 It is
evident that HNF-3á and HNF-3â expression
is necessary to maintain basic hepatocyte func-
tion. In addition, HNF-3á and HNF-3â also
mediate the cell specific transcription of genes
that are important for the function of intestine,
stomach, and pancreatic acinar cells from the
foregut. The HNF-3 family is expressed at ear-
lier stages of embryonic development and is
competent for transactivation even in dediVer-
entiated hepatocyte derived cells, when other
liver transcription factors are inactive or
absent. Thus, members of the HNF-3 gene
family might be the primary factors in the hier-
archy of the expression of liver enriched
transcription factors in hepatogenesis (fig 2).

Hepatocyte nuclear factor 6 (HNF-6)
HNF-6 is a recently identified member of the
family of liver enriched transcription
factors.80 81 It contains two diVerent DNA
binding domains: the novel homeodomain and
a domain homologous to the drosophila cut
domain (fig 1). HNF-6 is expressed in tissues
that originate from the endoderm cells lining
foregut, liver, pancreas, nervous system, brain,
and spinal cord.82 83 In the study of HNF-6
potential target genes during development, it
has been found that there are HNF-6 binding
sites in the promoter regions of HNF-3â and
HNF-4, as well as in the liver specific genes
transthyretin and á-FP.81 An overexpression of
HNF-6 can stimulate the expression of
HNF-3â and HNF-4 (fig 3) in cotransfection
experiments. The onset of HNF-6 gene
trancription is detected in the liver at embry-
onic day 9, correlating with the onset of liver
diVerentiation (fig 2). In situ hybridisation
studies of staged specific embryos demonstrate
that the HNF-6 expression pattern and level
are consistent with those of its target gene
HNF-3â in liver and pancreas. HNF-6 expres-
sion disappears transiently from the liver
between embryonic days 12.5 and 15, but is

Figure 3 Regulatory network of liver enriched transcription factors. The circlular arrows
represent autoregulation.
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present again in the liver after embryonic day
15.82 This pattern is paralled by HNF-3â. In
addition, HNF-6 and HNF-3â transcripts are
expressed abundantly and colocalise in the exo-
crine acinar cells of the pancreas on day 18 of
gestion and in the adult liver, although their
expression patterns diverge in pancreatic
epithelium.83 These findings suggest that
HNF-6 might regulate hepatocyte specific
genes and play a role in epithelial differentiation
of the the gut endoderm by acting on HNF-3â.

Conclusion and perspectives
The progress made to date suggests strongly
that the combined control of liver specific gene
transcription and a regulatory network among
liver enriched transcription factors are involved
in the fine tuning of hepatocyte diVerentiation.
A variety of pathophysiological states in the
liver are represented by abnormalities in
hepatic protein synthesis. Many human hepa-
tocellular carcinomas develop from precancer-
ous states to carcinoma by multistep carcino-
genesis, which is considered to be involved in
the complex alteration of proteins.84 The
molecular mechanism involved in the develop-
ment of hepatocellular carcinoma remains
almost unknown. The histopathological fea-
tures of hepatocellular carcinoma tissues are
useful in evaluating their clinical progress and
predicting patients’ prognosis: well diVerenti-
ated hepatocellular carcinoma is usually less
than 2 cm in diameter, and rarely metastasises;
some of the less well diVerentiated hepatocellu-
lar carcinomas are believed to develop from a
clone within a well diVerentiated hepatocellu-
lar carcinoma nodule, morphologically referred
to as a “nodule in nodule”, and have a strong
metastastic potential.84–86 When some of the
regulatory molecules are not present in suY-
cient amounts, the gene that requires that set of
transcription factors is either not activated or
maintains low rates of expression. We have
shown that the C/EBPá gene in hepatocellular
carcinoma cells can induce a cascade of
transcriptional events to alter the phenotype
and rediVerentiate cancer cells into a more
normal phenotype, or to induce cytostatic
growth arrest. Advances in molecular and
genetic biology have made it possible to intro-
duce exogenous nucleic acids into target cells
and to alter their genetic make up. An obvious
area of potential clinical application of these
new techologies is the treatment of genetic and
acquired disorders. We believe that inducing
the expression of HNF-4 and HNF-1á should
be an important strategy for inducing rediVer-
entiation of less well diVerentiated hepatocellu-
lar carcinoma into a well diVerentiated one.
Further eVorts should be directed to elucidate
how the liver enriched transcription factors
work together. Amelioration of liver dysfunc-
tion can be achieved by inducing or intervening
in genetic regulatory pathways that control
hepatocyte diVerentiation.
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